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The direct correlation function for an interface of a 
two-dimensional model in a weak gravitational field 

P C Hemmer and J Steckit 
lnstitutt for fysikk, NTH,  Universitetet i Trondheim, N-7034 Trondheim, Norway 

Received 30 October 1989 

Abstract. The direct correlation function for a fluctuating interface in a two-dimensional 
solid-on-solid lattice model is studied. We obtain for a weak gravitational field an 
asymptotic expression for the direct correlation function that agrees well with previous 
numerical results. In particular two different vertical length scales appear. 

1. Introduction 

Physical properties of fluctuating interfaces are of importance and has recently received 
increasing attention (Rowlinson and Widom 1982, Bedeaux 1986, Fisher 1984). Fluctu- 
ations of the interface between two fluid phases have different character depending 
upon the dimensionality, and are particularly strong for low-dimensional systems. A 
planar interface may be maintained by a gravitational field, such that in the limit of 
vanishing gravity the width of the interface diverges. Since gravity is a weak force one 
is led naturally to consider expansions in which the gravitational constant g is assumed 
to be the small parameter. 

In a recent article (Hemmer and Lund 1988) asymptotic results are given for a 
particular model-the solid-on-solid lattice gas model in two dimensions-a model 
which has also been studied by numerical means (Stecki and Dudowicz 1986) in the 
low-gravity regime. In  particular, the asymptotic results derived so far include the 
density profile, local and global susceptibilities, as well as the density-density correla- 
tion function. The characteristic length scales involved, both along the interface and 
normal to the interface, diverge (in different ways) in the weak gravity limit. 

For the direct correlation function it was, in contrast, found that indeed it is of 
short range both along the interface (Stecki 1984) and as a function of height differences 
(Stecki and Dudowicz 1986, Hemmer and Lund 1988). The purpose of the present 
paper is to study the detailed properties of the direct correlation function, and to 
provide explicit analytic expressions asymptotically valid for weak gravity. These 
properties are to some extent known from earlier numerical work by Dudowicz and 
Stecki (1986), and some aspects are also intimately related to a recent finite-size analytic 
of the same model in the absence of any external field (Ciach 1987, Ciach et al 1987). 
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2. The model and the associated eigenvalue problem 

The interface between an upper gas phase and a lower liquid phase can, in the lattice 
model, be described by a set ( h , )  of integer heights, measured from the average height 
of the interface. The Hamiltonian of the two-dimensional model is of the nearest- 
neighbour type: 

L L 

H = 2 J  Ih , -k+ i I+g  hf (1) 
r = l  I = I  

where g is a measure of the gravitational field. Eventually the horizontal length L + W. 

The probability distribution P (  h, ) of an interface configuration is conveniently 
expressed in terms of a transfer matrix 

T(h , ,  h,) =exp(-2Klh, -h,j- iGhf-iGhj) (2) 
where K = pJ and G = pg. Explicitly 

L 

P({h l } )  = 2-’ n T(hl, h1-1) 
I = ‘  

with the partition function 

(3) 

h 

All physical quantities are expressible in terms of eigenvectors +,, and eigenvalues 
An of the transfer matrix: 

T$n = A n $ ,  A o Z A l Z A 2 Z  . . .  . ( 5 )  
For a weak gravitational field it is possible to perform an asymptotic expansion of 

the eigenvalues and eigenvectors (Hemmer and Lund 1988). The eigenvalues are all 
degenerate for zero gravity, but a weak gravitational field resolves the degeneracy: 

An = coth K{1-(2n + 1 ) ~  + [ $ n ( n  + l ) + $ + $ ( n * +  n +$) sinh’ K]E’+O(E~)}  ( 6 )  
where 

E = iG‘/’/sinh K. (7) 
The eigenfunctions are most naturally considered as functions of the scaled variable 

(8) 
The asymptotic eigenfunction expansion also proceeds in powers of E. To lowest order 
the eigenfunctions are harmonic oscillator eigenfunctions. The principal eigenfunction 

(9) 
will be of particular importance below. 

y = yh  = G’/4(2 sinh K)”’h. 

cL0( h )  = y ’ / 2 T - ’ / 4  exp( -fy’)[ 1 + ~ ( 2  sinh’ K + 3)(&y4-&y2 +&) + O( E’)] 

3. Correlation functions 

The two-point height distribution function p ( h ,  h’; x) is the probability of simul- 
taneously finding the heights h, = h and h,,, = h‘ of two columns separated by a 
horizontal distance x. In terms of eigenvalues and eigenvectors of the transfer matrix 
we have 
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For large separations x only the first term remains, and the remaining sum represents 
therefore the height-height correlation function 

X 

g ( h ,  A';  x )  = c ( A n / ~ O ) " c L n ( ~ ) c L n ( ~ ' ) c L o ( ~ ) ~ O ( ~ ' ) .  
n = l  

The corresponding densiry-density correlation function is therefore 
x 3 c  

H ( Z ,  z ' ;  x ) =  c g(h ,  h'; x )  
h = :  / I  = z  

= f -f i ( A n / A , ) " ~ n ( h ) c L f l ( h ' ) c L o ( h ) r L l , ( h ' ) .  
h = :  h =; n ; l  

Introducing a discrete Fourier transform with respect to horizontal distances: 
X 

f i ( z ,  z ' ;  k )  = c exp(ikx)H(z,  z ' ;  x )  
r = - x  

we have 

h = :  h ' = : '  

introducing the difference operator A ,  through A , F ( z , ,  z2 )  = F ( z , ,  z,) - F ( z ,  + 1, z2 ) ,  
and similarly for A2 (Hemmer and Lund 1988). Expression (18) is easily verified by 
direct insertion of (14) and (18) into the defining equation (17). 

From the simple k dependence of c, 
e( z ,  , z,; k )  = Cl,( z ,  , z2 )  + 2Cl( z I  , z2 )  cos k (19) 

it follows (Stecki 1984) that the direct correlation function is strictly short-ranged in 
the sense that 

C ( Z , ,  z2; x )  = 0 for 1x1 > 1. (20) 
Moreover, C ( z l ,  z 2 ,  x = 0 )  = C,,(z,, z 2 )  and C ( z , ,  z2 ;  x = il) = C l ( z l ,  z,). From (13), 
(16) and (17) we obtain 
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These exact equations form the basis for the weak-gravity asymptotic expansion. 
I t  will be convenient to express the two non-direct correlation functions CO and 
in terms of 

Then 

Co(h1, h z ) = t c ( h , ,  h,; l ) + t C ( h I ,  h2;  - 1 )  

C,(h,, h , ) = - $ c ( h , ,  h2; l ) + i c ( h , ,  h,; - 1 ) .  

(24) 

and 

( 2 5 )  

The n = 0 term in (23) can be included since the gradient operation annihilates the 
extra term. It is obvious, however, that the auxiliary variable a can not be set equal 
to unity before the gradient operation is performed. 

Using 

orthogonality of the eigenvectors, and the eigenfunction expansion of the sth iterated 
transfer matrix: 

we may express (23) as 

So far everything is exact. We are now prepared for the weak-gravity expansion. 

4. Weak-gravity expansion, lowest order 

To lowest order we also replace the transfer matrix (2) by its G = 0 version: 

T ( h , ,  h 2 )  + To(hl, h 2 )  = exp(-2Klhl - h21). 
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In terms of the Fourier representation 

(32) 
sinh 2 K d k  exp(- ik(h-h ' ) ]  

cosh 2 K - COS k 

the s th  iterated kernel of T,, is trivially 

d k  exp[-ik(h, - h J ]  

Inserting into (30), summing the geometric series, and  using 

A , A 2  exp[-ik(h, - h2)] =exp[-ik(h,  -h2)]2(l  -cos k )  (34) 
we have, to dominating order, 

c ( h , ,  h 2 ;  a )  = d G ' ( h l ) 4 i ' ( h 2 )  
2a sinh (1 - cos k )  exp[ - ik(h ,  - h 2 ) l  2K 1 ir d k  

0 ~ 7 1  cosh 2K -ah,' sinh 2 K  -cos k 
(35)  

A,+hb"'=coth K (36) 

(37) 

We also insert the lowest-order approximation for the eigenvalue: 

see (6) .  This gives 

c ( h , ,  h,; 1)  = rLo'(h,)clo'(h,)(A,A2-8 sinh' K)Shlh2 

and 

c ( h , ,  h2; -1) = 4,1(hi)rL;1(h') 

( 1  -cos k )  exp[-ik(h, - h2)] 
l + 4 s i n 2  K -cos k 

AiA26hl.R2+4rr-1 sinh' K 

where the positive quantity B, is related to K via 

cosh Bo = 1 + 4 sinh' K (39) 
or, alternatively, 

sinh ;Bo = J 2  sinh K.  (40) 
Inserting (37) and (38) into (24) and (25) we have, to lowest order, 

C,(h,, h,) = 4 l g ' ( h l ) 4 i i ( h 2 )  
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The functions in brackets in (41) and (42) become rapidly negligible when the 
difference between the heights h ,  and h2 increases. The prefactor, however, is slowly 
varying and is therefore effectively a function of the average height: 

C", h,) = 4i1(h)4fi1(h*) = 4fi2( th + t h , )  

= y- 'J .n  exp[ y 2 (  h ,  + hJ2/4]. (43) 

This completes the derivation of the direct correlation function for weak gravity. 
The final results Co(h , ,  h,) and C,(h ,  , h,) as given by (41) and (42) agree excellently 
with the numerical computations reported by Stecki and Dudowicz and (1986) and 
their analysis of them. 

5. The field dependence of the intrinsic correlation length 

The lowest-order expressions (41) and (42) show that the short-range correlations for 
Ih, - h,l > 1 consists of an exponentially decaying function of the height difference, 
with an inverse intrinsic correlation length Bo. Will the intrinsic correlation length 
increase or decrease when the gravitational field increases? In order to answer this 
question we now compute the inverse intrinsic correlation length to next order, i.e. to 
O(dG).  

The exponential function originates from the sum c( h ,  , h,; l ) ,  (28). Replacing the 
exact transfer matrix T ( h , ,  h,), (2), by To(h , ,  h,) = exp(-2Klh, - h,l), we make an 
error of O(G) only. To order JG, then, the iterated kernels take the form (33) ,  the 
geometric series can be summed and the Fourier transform taken. The result is 

with A and B defined through 

cosh B = cosh 2K + A i 1  sinh 2K (45) 

and 

2 sinh 2 K 
A. sinh B 

A =  

Using in (45) the expansion (8)  of the principal eigenvalue A o ,  we obtain to O(JG) 

(47) cosh B = 1 + 4 sinh' K + JG sinh K. 

Introducing the zeroth-order inverse correlation length Bo, (39), we can express B, 
consistently to O(JG), as 

sinh K 
B =  Bo+B,JG=B0+JG- 

sinh Bo 

We see that B increases with G, and this answers the question posed above: the intrinsic 
correlation length decreases with increasing field. 

Stecki and Dudowicz (1986) studied the field dependence of the intrinsic correlation 
length in a different way. They considered the direct correlation functions CO and C ,  



Interface of a two-dimensional model in a gravitational Jield 1741 

for several height differences d = h ,  - h2 > 1, always at the interface, i.e. h ,  + h, = 0 or 
1 (depending upon whether d is even or odd). The quantity 

would be a (field-dependent) constant if the direct correlation function C i ( d ) ,  i = 0 or 
1, were decaying exponentially with the height difference. 

Using their very precise numerical values for the ?orrelation functions they obtained 
for several sets ( d , ,  d , )  the field dependence of B (figure 1). With Dudowicz and 
Stecki we note three main features. 

(i)  The straight lines show that a J G  effect is seen. 
(i i)  For G = 0 all values 5 converge to a common value, which agrees numerically 

(iii) There is a dependence on d ,  and d , .  
Since we just have determined the relevant part the short-range direct correlation 

function to order JG, it is easy to obtain the weak field expansion of l? to this order. 
The direct correlation functions in this range are, by (44), proportional to 

with Bo of (39). 

The operation A l A 2  produces four terms. By inserting the lowest-order expression (9) 
for Go, expressing Ci in terms of the difference d = h ,  - h,, assuming h ,  + h 2  = 0 or 1, 
expanding consistently in JG, and inserting into (49), we obtain the result 

(51) 

to this order. (When d ,  is odd and d ,  even, or vice versa, a factor exp( y2/4), originating 
from the long-range part C” of the direct correlation function, is present. This factor 
is included neither in (51) nor in figure 1.) The analytic result (51) is in excellent 
agreement with the numerical results in figure 1. 

i ( d , ,  d, )  = Bo+$ sinh K(2/sinh B0+2 coth $Bo- d ,  - d , ) J G  

6 
Figure 1. The function E, (49), determined from ratios of numerically exact direct correla- 
tion functions C ( d , ) / C ( d , ) ,  as a function of the gravitational field. The values ( d , ,  d 2 )  
of the height differences are given. The temperature is 0.3 T, ( K  = 1.968 956). (From Stecki 
and Dudowicz 1986.) 
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6 .  Discussion 

We have shown above how to execute a weak-field asymptotic analysis of the direct 
correlation function C( h ,  , h,; Ax) for the present two-dimensional system. 

The direct correlation function has some remarkable properties: it is short-ranged 
in its dependence upon Ax, the distance along the interface; in our model strictly 
short-ranged in the sense that C = 0 beyond a certain distance (here beyond Ax = 1). 
Thus the second moment of C, needed in the Yvon-Triezenberg-Zwanzig expression 
for the surface tension becomes simply 2C, in this model. 

The dependence of C on the height variables h ,  and h2 appears in two very different 
ways. To dominating order in the asymptotic analysis the direct correlation function 
consists of two factors: 

(52) 

The short-ranged factor Csr  is a function of relative heights Ih, - h2J and becomes 
quickly negligible with increasing height differences. This is physically reasonable 
when the relevant horizontal distances never exceed 1. The long-ranged factor 
C"(h , ,  h 2 ) ,  seen as $;'(h,)$; '(h,)  in (41) and (42), is a function of scaled variables 
and varies on the scale of the large interface width. Since the short-ranged factor 
requires the heights h ,  and h2 to be essentially equal on this scale, the long-ranged 
factor can be considered to depend on one variable, the average height. It is tempting 
to interpret the long-range factor to represent capillary wave fluctuations, while the 
short-range factor contains detailed information about the short-range structure of the 
interface. 

It is interesting to make contact with the work of Ciach (1987) who studied the 
same model with no gravitational field, but with a large finite size M in the vertical 
direction. The finite size M prevents, in a roughly similar way as a finite G, divergent 
interface fluctuations. Ciach found, for M - C O ,  a short-range factor in the direct 
correlation function, Stecki and Dudowicz (1986) realised that their numerical values 
agreed well with the Ciach short-range factor, and, indeed, our results in section 4 
verify that the lowest-order short-range functions C " ( h , ,  h 2 ;  Ax) for the two models 
are identical. 

Considerable care must be exercised in the asymptotic analysis. The gradient 
operators in the exact expression (28) produce four terms, and we have argued that 
gradients of the $0' factors produce terms of higher order in the small parameter G 
and should not be carried along. However, by themselves these additional terms would 
diverge when the auxiliary variable a - 1 (see also Dudowicz 1988). The proper 
procedure is to collect all terms of a given order in G (also those arising from the 
dominant contribution that we kept) before we set a = 1. This is, however, not an easy 
task because it is non-trivial to iterate the transfer matrix beyond lowest order. In 
view of this delicate balancing between divergences, the check of our analytic 
expressions against the numerical results of Stecki and Dudowicz is most welcome. 

The basic reason why C increases without bounds when the average height moves 
away from the interface is the fact that the bulk phases in our model are incompressible. 
The incompressibility causes H + 0 when z ,  , z ,  + *CO, and C, inversely related to H, 
must diverge. Allowing for density fluctuations, however small, in the bulk phases, 
will force C to reach a finite bulk value when z ,  , z ,  - *CO. That this is so for the 
genuine lattice gas (not the solid-on-solid version) is indicated by the computations 
of Dudowicz and Stecki (1985). To perform the same asymptotic analysis for the 

C ( h , ,  h,; Ax)= C"(h , ,  h 2 ) C " ( h l ,  h,; A X ) .  
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genuine lattice gas as we present here for the solid-on-solid version seems, unfortu- 
nately, not feasible. 
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